
Journal of Statistical Physics, Vol. 37, Nos. 5/6, 1984 

Microscopic Derivation of a Markovian 
Master Equation in a Deterministic Model 
of  Chemical Reaction 

Yves Elskens 1,2 

Received January 1, 1984; revisions received March 20, 1984; June 20, 1984 

We consider a (deterministic, conservative) one-dimensional system of colored 
hard points, changing color each time they hit one another with a relative 
velocity above a threshold. In the limit of rare reactions, the N-particle color 
distribution follows a Markovian birth-and-death process. Using the reaction 
rate as an intrinsic time scale, we also obtain the reaction-diffusion equation for 
a test particle in this hydrodynamic limit. Explicit results are given for a 
discrete and a Maxwellian velocity distribution. 

KEY WORDS:  Master equation; Markovian limit; hard points in one 
dimension; irreversibility; reaction-diffusion kinetics. 

1. INTRODUCTION 

One of the most intriguing questions of theoretical physics is the connection 
between our reversible description of microscopic processes and the irrever- 
sible evolution observed in macroscopic systems. The early formulation of 
nonequilibrium statistical mechanics adopts a probabilistic picture of 
microscopic processes, related heuristically to the deterministic dynamics: 
Boltzmann equations, Langevin equations, or master equations stand among 
the most popular examples. ~z~ These stochastic descriptions, Markovian or 
not, naturally entail an irreversible evolution of macrovariables. 

A first step toward a more satisfactory (eventually rigorous) 
justification of these stochastic equations was initiated by the introduction of 
weak-coupling or low-density limits, playing a role similar to the thermo- 
dynamic limit of equilibrium statistical mechanics. (3'9'19) In this scheme, one 
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is concerned with the evolution of some test particles in a larger system: 
such a method was first applied rigorously for hard points on the infinite real 
line. m'24~ On this general "hydrodynamic scaling limit" procedure for 
mechanical systems, we refer the reader to the review t25) by Spohn. 

The mathematical theory of dynamical systems and ergodic theory also 
lead to a complementary approach to irreversible phenomena. Dynamically 
unstable systems (like hyperbolic ones) seem to naturally lend themselves to 
a statistical-mechanical description: much progress was recently made in the 
analysis of physical models like the Lorentz gas, (4) planar billiards, (2~) and 
geodesic flows (2~ at a high level of mathematical rigor. The one-dimensional 
hard rod system also benefited from these works. (1'23~ From another point of 
view, dynamical instability hag also been used to propose a general technique 
for deriving a microscopic Markov process from a deterministic picture 
without resorting to projections or coarse graining in "mesoscopic" cells: 
this nonunitary transformation formalism (~8~ may also be applied to the hard 
rod gas, (5) and its results will be compared to the hydrodynamic limit in a 
future publication. 

The aim of the present paper is to present a derivation of a Markovian 
description from a fully deterministic, time-reversible dynamics modeling 
chemical reactions. To allow for as simple a discussion as possible, we 
consider the one-dimensional motion of colored hard points undergoing 
elastic collisions. The reaction is a simple change of color (A to B or 
conversely), which occurs only at collisions with a high relative velocity of 
the particles involved. As we are mainly concerned with the chemical 
evolution of M test particles (M ~ N), the initial state of the whole system is 
a thermal equilibrium with an arbitrary distribution of the colors. The 
reaction rate is determined by the number of collisions above the velocity 
threshold, and may thus be taken as an intrinsically defined small parameter. 
This will enable us to take a suitably defined hydrodynamic limit in which 
the Markovian description will emerge. 

The model is defined in Section 2, where we also recall some properties 
of the hydrodynamic limit for the process of self-diffusion. Our main results 
are stated in Section 3, where we discuss their physical interpretation. We 
obtain in the hydrodynamic limit a Markovian birth-and-death master 
equation for an "elementary" reaction scheme, for an arbitrary finite number 
of test particles. We also obtain for a single test particle the reaction- 
diffusion equation characteristic of the macroscopic phenomenological 
description. 

Section 4 is devoted to the statement and proof of some lemmas and the 
theorems. Two applications are presented in Section 5, namely, a simplified 
discrete velocity distribution and a Maxwellian distribution. Conclusions are 
summarized in Section 6. 
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2. THE MODEL 

2.1. Definitions 

We consider a system of point particles on the line. Particle k has 
position qk E ~, velocity v k E ~ and color r& ~ I = {-1,  1 }; - 1  stands for 
white (A) and +1 for black (B). The phase space of one particle in .01 = 

X ~ • 1; the state of particle k is co k = (qk, Vk, ~k)" The phase space of the 
infinite system is O = .OZ modulo permutations; the configuration space Ov 
is the space [R z of sequences (qk) modulo permutations; the velocity space is 
.Oo=~z ;  the color space is O c = I  z. The state of the infinite system is 
written as to = (q, v, rl). 

The evolution is given by the following "reactive hard points" 
dynamics. Particles move freely up to a collision; at a collision they rebound 
elastically: 

Ok(t) = vk(t) 

t~k(t ) = 0 [iff] g i  r k: qi(t) ~ qk(t) 

vk(t + O) = vi(t - O) [iff] qk(t) = qi(t) for some i 4: k 

(2.1) 

(2.2) 

Three-body collisions are excluded. We use the permutation freedom in ~Op to 
order all positions according to the index (k ~< i iff qk ~< qf); this ordering is 
preserved in time. The color does not change except at reactive collisions, in 
which the relative velocity exceeds some threshold 2e: 

0k(t) = 0 (2.3a) 

l qk(t) = qi(t) 
~/k(t + 0) = -r&(t - 0) ifffor some i ~  k Irk - vii ~> 2c (2.3b) 

Thus the colour variable r/k only counts the number G k of reactive collisions 
during lapse [0, t[: 

qk(t) -- t/k(O)(-- 1)ak(t) (2.4) 

The whole set of evolution laws (2.1)-(2.3) is deterministic, time reversible, 
and invariant for space-time translations. 

Except for the labels k, the motion of hard points cannot be 
distinguished from the free motion of the ideal gas on ~. We define 
trajectory (k) as 

Xk(t ) = qk(O) + Vkt (2.5) 
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in contradistinction with position (k), which follows the physical location of 
particle k in the hard-point model. The data of all trajectories are equivalent 
to that of the positions, but trajectories cross when particles collide. 

We consider states of the system where the particles are in thermal 
equilibrium, i.e., where the measure on the mechanical space Op • I2~ is 
invariant. These states are characterized by a uniform Poisson measure/ap on 
Op (with constant density p) and a product measure/1~ on I2~, all positions 
and velocities being independent. Since p simply scales the lengths, setting 
p = 1 implies no loss of generality. The common velocity distribution F(v) 
need not be specified, provided 

Iv[= f IvldF(v)=Ct 0, 

gv=f  vdE(v)=O 
R 

0 < r  m 

(2.6) 

Given a mechanical configuration (q, v), the color state of the gas is 
given by a measure P(rl I q, v) on iz, so that P(do~) = P ( q  t q, v)p~(dv)pp(dq) 
determines the probability measure on the phase space. This measure evolves 
according to the deterministic, reversible equation induced by the dynamics 
(2.1)-(2.3). In this paper, we mainly focus on the evolution of one-particle 
distributions 

P(d~176 = Jd P(do~) (2.7) 
WoX([al01) 

where the choice k 0 = 0 is arbitrary. The initial state being given up to a free 
translation, we assume % ( 0 ) =  0. 

The neglected particles (k 4: 0) now play the role of a bath modifying 
the motion and color of our test particles at random; the resulting stochastic 
process (qo, v0, ~0)(t) is generally not Markovian. 

2.2. Reaction Schemes 

The reaction equations (2.3) correspond to the deterministic 
isomerization scheme 

A + B ~ B + A  
(2.8) 

A + A ~ - - B + B  

where the transition A ~ B of a particle does not depend on the other 
particles' colors. As the essential feature of our model is that particles react 
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with their neighbors only, we define the right reaction number Nk(t ) of 
particle k, 

N k ( t + O ) = l + N k ( t - - O  ) iff 1 qk(t)=qk+~(t) (2.9) 
Irk(t) - Vk+l(t)t ~ 2c 

with Nk(0 ) = 0; this number corresponds to the elementary (symmetric and 
reversible) reaction scheme 

A +X~--~B + X  
(2.10) 

(X = A or B, does notchange) 

from which more complex schemes can be constructed by combination. For 
instance, our model allows for both left and right reactions: 

Ok(t ) = Nk(t ) + Nk_~(t ) (2.1 1) 

2.3. The Hydrodynamic Limit 

The isomorphism of the hard-point system with the ideal gas greatly 
simplifies its analysis. As Volkovysskii and Sinai proved, (23'27) these systems 
are K flows. In particular, they exhibit mixing of all multiplicities: 

Theorem 2.1. For any finite subset K c  ~, and for any sequence of 
times (ti), the distributions of (qk(ti), vk(ti) ), k C K, become independent as 
mini,2 I ti - ti] -* oo. 

This is reminiscent of a Markov property on an infinitely long time- 
scale. Spitzer (24) has in a sense specified this result by the explicit definition 
of a "hydrodynamic limit", using a scaling parameter e. Let 

q~(t) = eqk(e- 2 0 (2.12) 

and denote by xB(t ) the Brownian motion on the line: 

x~(0) = 0, ~x~(t) = 0 
(2.13) 

~(xn(t) xs(s)) = D min(s, t) 

with diffusion coefficient 

D =/~o/P (2.14) 

Theorem 2.2 (Spitzer). The stochastic processes q~(t) converge 
weakly to the Brownian motion process x~(t) as e ~ 0. 

822/37/5-6 I2 
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Observing that only /~0 matters in Spitzer's proof straightforwardly 
yields (cf. Section 4.2) the following: 

Corollary 2.3. If the velocity distributions F~(v)  converge uniformly 
to Fo(v ) as a -~ 0, the following limits commute for any finite interval [0, T] 
of time: 

W 

q~(t; iT) , xB(t; D~) 
(~-,0) 

W l ((~ ~0) w t ((r -*0) 

q~(r; O) w �9 , xs( t ;  Do) 
(~o) 

where D is given by Spitzer's formula. 

Though Spitzer's theorem holds for general velocity distributions, the 
microscopic motion q(t)  is usually a non-Markov process, ~14) except for the 
special (discrete) velocity distribution ~17'21) P(v  =/-to)--P(v =-~t0) = 1/2: 

As the distribution function f ( x ,  t) for the position of a Brownian 
particle satisfies the diffusion equation 

D 
(3tf = ~ (3Zxf (2.15) 

one may consider Spitzer's theorem as a rigorous derivation of the self- 
diffusion equation for the hard-point system. (15) Unifortunately, Theorem 2.2 
does not imply diffusion in its ordinary sense, for particles always remain in 
the same order (given by their indices). Moreover, the scaling (2,12) entails a 
blockwise diffusion process(26): the motions of particles k, i are independent 
in the "hydrodynamic limit" e ~ 0 provided that l im~  0 e Iq~,(t) - q~(t)l = ~ .  
Thus even "macroscopically" separated particles undergo joint motion in 
this one-dimensional model. 

3. COLLISIONS AND REACTIONS 

3.1. Definitions 

As the mechanical state is stationary, the expected number of crossings 
undergone during [0, t[ by a trajectory of velocity v with faster trajectories 
(coming from its left) is C24) 

ptldt(v ) = p t  (v '  -- v)  d F ( v ' )  (3.1a) 
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and similarly for slower trajectories: 

Pt#r(V)=pt (V v ' )dF(v ' )  (3.1b) 

The expected total number of intersections per unit time (with p = 1) 

f i ( V )  "~ f i l ( V )  q- f i r ( V )  (3 .2)  

is a differentiable convex function with a positive minimum fire =fi(Vm) and 
an average 

= ;~ fi (v) dF(v ) (3.3) 

We also introduce the symmetry parameter for collisions 

).(v) = rain (/at(v) tat(v)~ ~ 0,-~- (3.4) 
~fi(v) ' f i(v) / 

which is maximum for v = v m. 
The expected number of reactions per unit time occurring on a 

trajectory of velocity v, is given by the analogous integrals 

~ ( v )  = ~,(v) + ~r(V) 

f 
t~-- 2c 

~t (v )  = (v -- v') dF(v') (3.5) 
--(30 

;? 3~r(v ) = (v' - v) dF(v') 
+ 2c 

which incorporate the restriction (2.3). Let 

= ]R 5~(v) dr(v)  (3.6) 

Because trajectories are independent and intersect only once, the probability 
for the next intersection of one trajectory to be reactive is 

s(v)  = 5 ; ( v ) / ~ ( v )  (3.7) 

whatever happened before on this trajectory. By symmetry, this is also the 
probability that the last intersection was reactive. 

We determine in Section 4.1 the probability 

b(v) -- 2~.(v) s(v) 
1 --  22 (v )  + 2)!,(v) s(v) (3 .8)  
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for a particle to undergo at least one reaction at one of its later returns on a 
trajectory with velocity v. The same arguments allow one to define 

sr(v)  = <<. s (v )  

2~S r 
b~(v) = 1 - 2)~ + 2)~s~ ~ b(v) 

and similarly s I and b t. 

(3.9) 

3.2. Colliding and Reacting Pairs 

In one dimension, a particle can only react with its two neighbors. Since 
the mechanical state is stationary, the parameters #r, ~2r determine the 
expected numbers of collisions Q~(t) and reactions Nk(t ) occurring between 
particles k and k + 1 during [0, t[; for instance, 

~'Nk(t ) = tJ?/2 (3.10) 

As successive collisions may not be independent, the distributions of 
Qk(t) and N~(t) are generally not Poissonian and one cannot compute 

(rlk(0) r/~(t)) = ~ ( -  1)GkU~ (3.1 1) 

directly from ~r Yet, as the particle's evolution is a K-mixing process, we 
may expect that reactions separated by long durations be quite independent, 
so that a simple chemical evolution is possible on a time scale of order ~ -  i. 
Consider thus a scaling parameter e such that p ~  = eZg. This can be 
achieved physically, e.g., by fixing a threshold c and reducing the proportion 
of faster particles, or by letting c ~ ~ with a fixed distribution F~(v) = F(v). 
We define the scale-dependent processes 

N~(t) = Nk(e 2t) 
(3.12) 

q~(t) = r/k(e-2t) 

Both stochastic processes are n0n-Markovian, with no discontinuities of the 
second kind. ~1~ We denote by v(t; g) the (Markovian) Poisson process with 
rate g: 

(gt)" (3.13) P(v(t)  = n) = P ( v ( - t )  = - n )  = e-gt n! 

and by 7(t; g) the Markov birth-and-death process on I with rate g: 

y(t) = ( -  1) ~(t) (3.14) 



Markovian Limit for Chemical Reaction 681 

For any subset K c 7/, (Vk(t; g)), k E K, denotes the vector Poisson process 
with independent identically distributed components defined as v(t; g), and 
r K =  {klk- 1 ~K} .  

Theorem 3.1. If the velocity distributions F6(v ) converge uniformly 
to Fo(v ) as e -* 0 and are such that (with the dependence on e implicit in all 
these expressions) 

(a) lim g -  2~.@,0 = g < O0 
e-+O 

(b) l i m ( b ( v )  ~(v)_ dF(v)=O 
~ 0  JR 

(c) lim ( ~ r ( v )  ~.~,(v) dF(v) = 0 
~0 JR / 4 v ) ~  

(d) lim (vo ~'(v)= dF(v) = 0 for some v o > 0 
~ 0  J_v0 

then for any finite subset K c Z, the vector process (N~(t)), k C K, converges 
weakly to the vector process (Vk(t; g/2)). 

Color evolution itself for the particles is described by the subsequent 
corollaries: 

Corollary 3.2. With the hypotheses (a)-(d), the color process r/~,(t) 
converges weakly to y(t) for any particle k. 

Corollary 3.3. Under hypotheses (a)-(d), the vector process (G~(t)), 
k E K, converges weakly to the vector compound Poisson process with 
components Vk(t ) + V k_l(t), whose components are independent iff 
K ~ v K = ~ .  

3.3. Physical Considerations 

The physical motivation behind the scaling in Theorem 2.2 is the 
difference in magnitude between the scale at which the (deterministic) 
process of motion occurs and the scale at which this motion is observed as a 
Brownian process. On these grounds one would relate ~ to the ratio of a 
mean free path to a macroscopic length. However, no such macroscopic 
length, like one related to a density gradient, can be defined for self-diffusion 
in the equilibrium "bath" of Spitzer's canonical ensemble: this leaves us with 
some indetermination on the status of the parameter e. 

By contrast, for the reacting model, the scaling parameter should be 
taken as the fraction ~//Y of reactions with respect to all collisions: as both 
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quantities are well defined from the microscopic dynamics, this ratio is 
in t r ins ic  to the model. The macroscopic time scale so defined by the reaction 
rate may also determine a spatial scale via the diffusion constant D. 

The main role of the scaling by e, in all these models, is to allow for 
"many" collisions between successive observations of the particles. Then the 
details of the microdynamics are smoothed out and one is left with their 
average effect. Moreover, as the non-Markovianity of the microscopic 
process is due to correlated collisions or reactions, our sampling at 
macroscopically separated times allows for these correlations to fade away: 
we do not see the "transient" perturbation of the environment and the relax- 
ation of a test particle's velocity just after a reaction. 

In view of this separation of scales, the irreversible nature of the 
macroscopic evolution is not surprising; and the disconnection of future from 
past--reflected by the independence of increments--also follows directly. It 
may be worth emphasizing that we are not looking here at the whole set of 
variables (qk, vk, r/k), k E 7/, and their evolution: our Markov process is a 
"projection" of the general evolution onto a chosen subset of variables. 
However, we may take the finite subset K c Z as large as we wish: if one 
assumes that all observables relate to a finite number of particles, this 
argument justifies the Markovian description of macroscopic chemical 
reactions "in our model. 

The role of each condition in Theorem 3.1 is to implement the ideas 
behind the "decorrelation of collisions" mentioned above. Condition (a) 
expresses that e2 is the right scaling for ~ .  Conditions (b)--(c) avoid "chain 
reactions": even shortly after a reactive collision, when it may have a high 
velocity, a particle is not likely to find a reactive companion and it thus 
"thermalizes" with its new color. Condition (d) is a purely technical 
requirement, intended to eliminate reactions from the slow-velocity trajec- 
tories which the test particles visit an infinite number of times; this condition 
(d) is natural (see Section 5), but its loosening might be harmless to our con- 
clusions. 

3.4. Multivariate and Reaction-Diffusion Stochastic Models 

Theorem 3.1 and its corollaries immediately matter to the physical 
description of reactions in the hard-point gas. Indeed, the Markov processes 
v(t; g) and y(t; g) are described by the Chapman-Kolmogorov (master) 
equations, 

P ( v ( t )  = n )  ~- g P ( v ( t )  = n - 1) - -  g P ( v ( t )  = n )  (3.15 a) 

P(7(t) = 1)= g -  2 g P ( ~ ( t ) =  1) (3.15b) 
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Corollary 3.3 therefore implies the validity of a multivariate master equation 
for the elementary process (Nk(t)), k ~ K U rK, underlying the M-particle 
reactions process (Gk(t)), k E K, and the corresponding color process (r/k(t)), 
k C K. However, as (Gk) appears as a combination of these independent 
Poisson processes, the multivariate master equation does not hold for (Gk(t)) 
itself unless K ~ rK = r 

Similarly, the relaxation equation (3.15b) extends as e--+ 0 to the vector 
((--1)Nk(t)), k E K, with independent components for any finite K, but not to 
the corresponding vector (r/k(t)), k C K, in general. Indeed, a convenient way 
to express a distribution function on the space I *~ of colors of M test 
particles is to give the 2 u expectations g'(]TIk~kr/k) for all subsets k o K .  In 
view of Corollary 3.3, one factorizes 

if (k U rk) ~ (i U ri) = 0, so that we may consider only intervals { 1 ..... M} 
and find all other expectations by translations and products. Now 

M 

I~ r/k(t) r/k(0) ~ g~(--1) v~ = e-2g' (3.17) 
k = l  

If the M test particles had independent colors, the product would decay as 
exp(-2Mgt) by (3.16): neighboring particles are not independent. Of course, 
one may also interpret our model as describing the isomerization (A, B) of a 
family of M particles in a bath of "colorless" (X) particles [see the model 
(2.10)]. 

In this context, even more physical would be the derivation of a 
reaction-diffusion (multivariate) master equation, ~16) which would describe 
the whole phenomenology of the M particles in our dynamical model. But 
here the rigid ordering limits us to a blockwise diffusion. So from 
Theorems 2.2 (or its extension 2.3) and 3.1 we deduce the following: 

Theorem 3.4. Under hypotheses (a)-(d), the one-particle joint 
process (q~(t), G~(t)) converges weakly to the independent Markov process 
(x.(t), v(t)) with diffusion coefficient D = ~to/p and reaction rate ~. 

Hence, in the scaling limit e ~ 0 ,  the one-particle position-color 
probability density f (x ,  t/, t) is factorized: 

f (x ,  ~l, t) = q/(x, t) h(q, t) (3.18) 
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where ~' and h satisfy the diffusion and reaction equations 

D z 
c~t q / = - 2 -  C3x ~t (3.19) 

c3,h = g(1 -- 2h) 

The probabil i ty density f ( x ,  r/, t) can also be related to "concentrat ions"  

f •  t ) = f ( x ,  +1, t) (3.20) 

which satisfy the coupled reaction-diffusion phenomenological  equations 

D 2 + __f+  
a ' f  + = T a x f  + g ( f  - ) 

(3.21) 
D 2 

c3tf- =To.f- + g ( f +  - f - )  

corresponding to the isomerization model (2.8) in ideal conditions. As the 
functions f •  refer to a single particle, the phenomenological  equations 
describe a self-diffusion-reaction process, 

4. PROOFS 

4.1. Lemmas 

Before proving the theorems, we must discuss a few physical events 
related to the evolution of a test particle after a t ime at which its velocity is 
known. 

I.emma 4.1. If  a particle is on trajectory Xo(t )=qo +rot  at time 
t =-0, the probabil i ty for its coming back exactly n times on this trajectory 
later is Kn(1 - K)  with K = 22(v0). 

Proof. Denote by Lk(t ) (resp. Rk(t)) the number  of  trajectories x i 
crossing x k from the left (resp. right) in the time interval [0, t[. The event 
qo(t) =xk(t  ) is identical to the event Lk(t ) --Rk(t ) = k, and L k and R k are 
independent Poisson processes with rates p/~l(Vk) and pl~r(Vk). Therefore 
L o - - R  o is a (biased) random walk, whose returns to the origin have a 
negative binomial distribution, with the return probabil i ty 2)~(vo). II 

Consequently,  the probabil i ty for this particle to undergo a reaction 
when leaving x 0 after a return on it, is 

2~,s 
b(v) = I - 2~. + 22s 
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The same argument holds for the reaction probability when coming back on 
x0, and for determining b l and b r. 

Lemma 4.2. If a particle is on trajectory x o at time t =  0 and on 
some other trajectory at time t, its conditional velocity distribution has a 
bounded Radon-Nikodym derivative dF(v, t I Vo)/dF(v) <. Q. 

The proof (mainly technical) is in the appendix. Inserting this result in 
the definition of ~r(v) shows that the reaction number of particle 0 
conditioned by its velocity v 0 at time 0, is majorized by the stationary 
Poisson process with rate Q~r 

These last results restrict the non-Markovianity of the velocity and 
reaction processes: the v0-conditioned evolution cannot differ from the 
unconditioned evolution by more than a factor Q. 

4.2.  Proof of Corollary 2.3 

The least obvious part is the limit a-~ 0 for ~ 4: 0. However, the joint 
distributionsf(q(tl) ..... q(t~); a) are directly obtained from the time-displaced 
self-distribution functions, which may be expressed as continuous functionals 
of the velocity distribution F(v) (the two-time function is given explicitly by 
Lebowitz and Percus(14)): the joint distributionsf(q(-); a) converge pointwise 
to the joint distribution f (q( . ) ;  0) if the distribution functions F~, converge 
uniformly to F 0. 

Weak convergence is then obtained by verifying the tightness 
condition (1~ 

lira limsup A (2, 6, a; e, T) = 0 
6--*0 a ~ 0  

for every 2 > 0, with 

A(2,6, a ; e , T ) = P  ( sup [q~(s;a)--q"(t;a)l> 2) 
\ I s - t r < 6  

~<P sup v(t) > -~ + P inf v(t) 
\ 0 < t < T  0 < t < T  

< - 

Consider the first term on the right-hand side. The test particle can reach a 
velocity v > 26-  ~ during [0, T[ only if there is such a fast particle within the 
interval ]--(v + 2 6 - ~ ) T ,  0[ at initial time, or if it starts with such a high 
velocity: 

P sup v ( t ) > 2 6  -1 ~ < 1 - F o ( 2 6 - ~ ) +  pT(v+26-1)dFo(v) 
\ 0 < t < T  /6  
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Thanks the uniform convergence of F~, the right-hand side converges to the 
same expression with F 0 . Then both terms vanish in the limit 6 -~ 0 by (2.7). 

The infimum part is treated in the same way. 

4.3. Proof of Theorem 3.1 

To prove weak convergence for the vector integer-valued processes 
(N~(t)), we first show convergence in probability for n-times joint 
distribution functions of one component Nk(t ), which reduces by stationarity 
to demonstrating independence of the increments for t > 0 versus t < O. The 
condition on successive increment of Nf,(t) warranting weak convergence is 
then obtained. Finally we prove that the components of the vector (N~,(t)) 
converge weakly to independent processes. 

Convergence in Probability for N~. As k =  0, we omit the index in 
this section. Using e -2 as scaling parameter for ~ ,  we must prove that the 
increments of the limit N*( t )  of N~(t), for t > 0, are (a.s.) independent of its 
increments for t < 0. 

Consider a time 0 > 0. For e ~ 0, the number of reactions within ]0, 0[ 
almost surely vanishes as 0-~ 0 because of condition (a) and (3.10). Thus we 
may subtract from ~ an interval ]0, 0[ without modifying the evolution of 
the process N*(t) ,  provided that 0 ~  0 as e ~ 0. 

Moreover, K mixing in velocity space (Theorem2.1) implies that a 
particle's velocity at time t = 0 be independent of its velocities at any finite 
number of instants t < 0, if ~-20-~ c~ as e ~ 0 .  Therefore reactions after 
t = 0 will not be affected by the insertion or deletion of reactive trajectories 
(modifying N* arbitrarily), provided the particle does not cross them after 
t = 0. By condition (d), a reactive trajectory must have a finite velocity in 
the scaling limit; it now suffices to show that the particle cannot recross after 
t =  0 a reactive trajectory it followed before t =  0. This follows from 
Spitzer's theorem and from the law of the iterated logarithm for the 
Brownian motion. 

Now, the two requirements e-20--,  oo, 0 - ~ 0  are compatible, and the 
proof is completed. Thus, since N ~ has stationary increments, a.s. equal to 
unity, it converges in probability to the Poisson process with rate g/2 deter- 
mined by the expectation (3.10). 

Weak Convergence. Let T > O ,  O>O, e > O  and define 
functionals 

A ~(N") = sup min(N~(t) -- N~(t -- 0), N~(t + O) -- N~(t)) 
O<t<T--O 

Ao(N e) = A'o(N ~) + N"(O) + N~(T) -- N~(T -- O) 

the 
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Weak convergence of the integer process N~(t) to v(t) on [0, T] is given 
by the tightness condition 

lira l imsup P(Ao(N ~) 4: O) = 0 
0 -40 e~0 

But P(Ao(N ~) ~ O) <~ P' + P", with P '  = P(A'o(N ~) 4= 0) and 

P" ~ ~N~(O) + g(N~(T) - N~(T-  0)) ~ ~0 

vanishing for 0 ~ 0. 
The probabil i ty P '  that two reactions of  (k, k + 1) occur in [0, T] with 

a separation shorter than 20, is easily estimated using the stationarity of  the 
reaction process: 

~ T  
P' <~ e -2 - - - f -P(N (20) 4: 0[ reaction at t = 0) 

The reaction during ]0, 20] conditioned by the initial reaction (at t = 0), can 
be triggered by two processes: it may  occur on the same reactive trajectory 
x 0 which the particle k = 0 followed just before the initial reaction, or on x 1 
followed just after the reaction, or it occurs on another trajectory: 

p, tf (P (Vo, v,) + P (v0, + a29( o, Vl) 2 ~2 

where P~ and P'I, respectively, are the probabilities for reactions on x 0 and 
x 1, and P~ is the probabil i ty for a reaction on another trajectory. The joint 
velocity distribution function ~0(v 0, v~) for reactions, with v 0 > v l, is known: 

d2~0(v0, Vl) = [ v0 - -  u 1 ]X(Vo ~---/2 /> vl + 2e) dF(vo) dr(v 0 

Let 

fi,,=  r(Vo) dFr(vo) = d2(p(Vo, u1) = 2 _ dF(vo) 

We first examine P~. The next collision on x 0 may  be a second reaction 
of  (0, 1), which has probabil i ty st(Vo); and a reaction of  the pair  (0, 1) may  
also occur again on x 0 if these particles later come back on it. Thus 

P~(vo, vl) ~ Sl(VO) + bt(vo) + br(vo) 

s1(Vo) + 2b(vo) 

Jcf~2P ~ d2~o ~ fg (s,(v) + 2b(v)) dFr(v ) 
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A similar argument can be given for P~, so that the first two terms in the 
integral majorising P '  are independent of O and vanish for e ~  0 by 
conditions (b), (c). 

Finally, the probability P~ for another reaction of the pair (0, 1) on 
other trajectories during ]0, 20] is easily majorized, using Lemma 4.2, in 
terms of the stationary reaction rate: 

f~2p~(vo ' vl ) d2to(Vo, Vl ) ~ Q~--2 ~ -5- 2ep 

vanishing as 0 ~ 0 uniformly in e. 

Independence. Let us now give all reaction times for M pairs 
(k, k + 1), k ~ K, and show that reactions at k = 0 ~ K are independent of 
them as e ~ 0. First, the distances I q 0 -  qkl (k C K) are finite because of the 
Poisson distribution of positions. Thus a trajectory with velocity Iv I> v0 
must cross the set {0} U K  in a finite lapse of microscopic time: as e ~ 0, 
this becomes instantaneous. Hence only reactions of K in [t I - 0, t 2 + 0] can 
affect the reactions of k = 0 during the lapse [t I , t2], 0 ~  0. 

The only information provided by a reaction occurring is that two 
trajectories cross with a high relative velocity. Each such trajectory has a 
velocity distributed according to either F l or Fr, so that it causes a reaction 
of any given particle k C 7/ with a probability smaller than 

2 je (b(v) + s(v)) dFr(V ) 

(or similarly with 1), vanishing as e ~ 0. Since the pairs of K have only a 
finite number of reactions during the lapse, these reactions do not affect the 
reactions at k = 0. 

Thus reactions at k = 0 (almost surely) do not occur on the same trajec- 
tories as reactions at k E K as e ~ 0. Since trajectories are independent, so 
are the reaction processes (N*), k C K, and No*. By translation invariance, 
this implies independence for any finite K c Z. 

4.4. Proof of Theorem 3.4 

Since (N*) converges weakly to (vk), we only need prove that, given 
any realization of (N~), the conditioned process q"(t) lN ~ converges weakly 
to the independent Brownian motion xB(t ). But the only information 
contained in (N~(t)) is that the trajectories just before and after each reaction 
have a large relative velocity. Let us delete some of these trajectories: the 
particle now crosses them instead of reacting. At time t, the index k of the 
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trajectory on which our test particle now travels, differs from the original 
index k' by at most the number (n) of deleted trajectories--which is finite. 
This deletion of reactive trajectories induces a shift in spatial motion by an 
(a.s.) finite distance (at most ~n/p) close to the original one, so that they 
both converge to the same motion q(t). This proves the independence of q"(t) 
with respect to (N*(t)) in the scaling limit. Spitzer's theorem can then be 
applied directly. 

5. EXAMPLES 

5.1. The 4-Velocity Gas 

As a first example, 
distributions Fo : 

d 1 - - a  

consider the following family of velocity 

G 
~vF(v)  - ~ (cS(v + 1) + cS(v -- 1)) + ~ -  (cS(v + c) + 6(v -- c)) (5.1) 

with Dirac distributions 3. This is the simplest discrete even velocity 
distribution for which reactions may be described deterministically as high- 
energy collisions (c > 1). The average collision velocity is distributed as 

/2(+c) = c, /20=/2(+1)= 1 + (c--  1)o (5.2) 

Reactions only occur between particles moving at • 

3 ( + c )  : at ,  3 ( •  (5.3) 

with the average reaction rate 

p ~  = a2cp (5.4) 

Since reactive trajectories have the highest velocity, a particle never returns 
on them (b(v)= 0) and double reactions are rare: 

clF( ) = 0 
 /2(v ) 

Conditions (b)-(d) are fulfilled for any a, and condition (a) is satisfied with 
the following scaling of a by e: 

a =e  (5.5) 
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The reaction rate ~ after scaling and the diffusion coefficient D O are 

g = p e  =p2eDo,  D O = l ip  

Note that for a = 0  the microscopic motion also 
process. (21) 

Elskens 

(5.6) 

becomes a Markov 

\ 7~m / 
(5.8) 

determines the diffusion coefficient D, whose square-root dependence on the 
temperature must be traced to the restrictive nature of  one-dimensional 
motion. 

The average relative velocity for collisions from the left is 

1 w2 U 
&(v)  = # r ( - v )  = ~-/~0 e -  - -~-erfc w (5.9) 

with the dimensionless velocity w =  (m/2T)I /Zv.  The average collision 
frequency is 

p~ = pgu(v)  = v:2 u0p 

The average reaction rate 

fig = f i e  -mc2/r (5.11) 

is just the Arrhenius expression, with the kinetic energy me 2 in the center-of- 
mass frame. We define for simplicity the dimensionless velocity threshold 

y = c (5.12) 

(5.10) 

where T is the temperature (k~ = 1) and m the mass of  the particles. The 
mean velocity 

5.2. The Maxwellian Gas 

As a second example, we choose a normal distribution of  velocities: 

( m t'/2 e mv2/2r dv (5.7) dF(v)  = F ( v )  dv = \ 5 7 - f /  
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Since the Maxwellian distribution allows for arbitrarily large velocities, we 
maintain its parameters in the hydrodynamic limit and only scale the 
reaction threshold: 

y ~ o o  

Such a scaling is physically justified for thermal (i.e., collisional) 
isomerization reactions by the high values of the activation energy. ~s) For 
instance, ~6) the eis-trans isomerization of C D H = C H D  (which has no heat of 
reaction) require 2.82 eV per molecule (272 kJ tool 1) around 750 K, so that 
~ 2  = 43.6 and e x p ( - - y  2) = 10 -19 for the twisting of one molecule. Twisting 
two molecules simultaneously (as in our model) would require 272 = 87.3. 

Conditions (b)-(c) are readily verified, with bounds in powers of the 
Arrhenius factor; let then 

2T 
C 2 = ln(2-1/4e-1) (5.13) 

m 

The microscopic reaction rate scales as p~r = e2g with the macroscopic rate 

g=P~o (5.14) 

The rescaled reaction rates 

g*(-u) = g*(u) = lim e - ~ r ( u e ) p  
~ 0  

are easily found: 

for u < 2 - - V / 2 : g * ( u ) = 0  

for u = 2 - - V / 2 :  g*(u)=g (5.15) 

for u > 2 - - V / 2 :  g * ( u ) = o o  

so that condition (d) is satisfied for any finite v 0 > 0. In the scaling limit 
( c ~  oo), almost all reactions involve particles with velocities larger than 
(2--X/2)c; slow particles nearly never meet partners for reaction. As very 
fast particles are very rare, most reactions occur at v --- +e: 

lim pe-2~(ue) eF'(ue) -- �89 + 1) + ~(u - 1)] (5.16) 
C~OO 

6. CONCLUDING REMARKS 

We have shown on an explicit (though simplistic) example how one can 
derive an exact Markovian master equation for the populations involved in a 
chemical reaction. As in all arguments involving hydrodynamic types of 
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limits, the only statistical element injected in the description is the initial 
ensemble. The Markov property is obtained on the macroscopic time scale 
(by tuning an intrinsic small parameter) for the distributions of an arbitrary 
subset of an infinite population. The basic elements in our analysis are 
indeed the N-particle distributions. 

Thus the reacting hard-point model presents in the hydrodynamic limit 
the best stochastic properties one can expect from a one-dimensional model: 
for better diffusion in space, one must resort to either stochastic dynamics ~12) 
or higher dimensionality. (13'1~) Moreover, poorer dynamics do not lead to 
such a Markovian behavior: with the same reaction conditions, ideal gas 
dynamics does not lead to a Markovian reaction scheme for even two 
particles, for a particle always preserves its velocity and its (corresponding) 
reaction rate ~2(v). And since particles always keep the same relative 
velocities, their reactions are finally correlated. ~7) 

As our whole discussion rests on the effective use of the correlation- 
decay properties of the hard-points model, we should investigate more deeply 
the connections between the hydrodynamic limit and the abstract theory of K 
flows, which applies to this model. ~1) In particular, a general abstract 
technique has been devised for such systems to derive exactly Markov 
processes equivalent to deterministic dynamics. (18) We are presently 
performing such an analysis, though of course chemical processes need not 
always be described by K systems at the microscopic level! 

Finally, it would be sensible to extend our results to more complex 
reaction schemes; however, any such improvement would be unrealistic as 
long as the particles of various species cannot diffuse to react with farther 
particles. Therefore one should first investigate generalizations to higher 
dimensionalities. In this framework, the only case for which some rigorous 
results are known is the low-density gas in the Boltzmann-Grad limi(13): 
there one may hope deriving the Markovian master equation together with 
the (linear) reactive Boltzmann equation for the macroscopically ideal 
mixture. The extension of these works to nonideal systems is still an open 
problem. 
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APPENDIX: CONDITIONAL VELOCITY DISTRIBUTION 

L e m m a  4.2 is completely independent of  the notion of reaction we use 
through this paper: it simply expresses a uniform bound on the velocity 
distribution at any time, given the velocity at some time. For  a differentiable 
distribution function F, it may  be stated as 

if 

hi(v, t l v0) ~ Qho(v) 

dF(v) = ho(v ) dv 

dF(v, t l Vo) = hi(v, t lVo) My +A(v, t) 6(v -- v0) dF(v) 

where A(vo, t) is the probabil i ty (14) for the particle to be at time t on the 
same trajectory (of velocity v = v0). A straightforward calculation from the 
self-correlation function (14) yields 

Q(v, t ] Vo) - hl(v'  t l Vo) ho(v ) - p t f  e-~176 dy 

where we omit the dummy variable y in the notations 

v =l , (y)  

~, = (u2 _ y2)i/2 =/1 _ _ _  

q ) = l n  r  
q/ 

n = z ( y  > v) -Z(Vo > y) 

y2 

/~+q /  

and I n is the modified Bessel function of  nth order. 

(1) I f v  0 < 0 < v o r  v < 0 < v  0 , one easily sees that  

Q(v, t I Vo) <<.pt f p e - ~  Io(ptq/) dy 

We part  the real line in four regions: 

(a) For  y ~> Y0 ~> 0, assuming/.z + ~, ~< yy: 

i 
cx) 

pt e-~ Io(Ptgt) dy ~ y 
YO 

822/37 /5  6 13 



694 Elskens 

with the standard majorizat ion of I 0 by the exponential and the definition 
of q/. 

(b) For 0 ~< y ~  Yo, assuming gt />s and g + q/~< m: 

fro (_~_ )  1/2 [pt  2' 1/2 pt e-~ dy ~ erf ~ -  Yo) 

by similar arguments.  

As analogous majorizations hold for y ~ 0 ,  the ratio Q(v, t lvo) is 
bounded by some constant  Qo. 

(2) If  0 < v < v 0, the previous majorizations cannot  be used on the 
interval [0, v], but hold everywhere else. Now, for Y0~  Y ~  v, assuming 
g + ~'~<yy: 

pt e_Ot" lu +______yy ii(ptqJ) dy 4 73 
o gt 

and for 0 ~< y ~< Yo, assuming ~, >/s and g ~< m: 

;o pt Y~176 I't +-------~Y l l (Pt~)dy ~ 
~u s 

so that Q(v, t[ Vo) is again majorized by a constant Q1- 
(3) The other cases are treated similarly. 

We must now justify our majorizat ions and minorizations of  ~u and p. 

Write F 0 = F(0). 

(1) For  y>~0:  I t (y )>/yFo+(1/2)go  and if 0 ~ < y ~ < y o :  ~ ,2 (y )~  
( F ~ - 1 ) y  2 +#oFoY + (1/4)g~. The right-hand side is minimum either for 
y = 0 or for y = Yo ; choosing Yo =/~o/2, s = #oFo/2 and m = 3y o leads to our 
inequalities. 

(2) For y />  Yo, the convexity of  p and the inequality ~, ~< ~ allow one 

to choose 7 = 2p(yo)/Yo. 
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